Preliminary communication

ON THE USE OF ¹³C—¹³C COUPLING IN ESTABLISHING INTRAMOLECULAR VERSUS INTERMOLECULAR CO LIGAND REARRANGEMENT PROCESSES IN METAL CARBONYL DERIVATIVES

DONALD J. DARENSBOURG

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (U.S.A.) (Received November 26th, 1980)

Summary

 ${}^{13}C-{}^{13}C$ spin—spin coupling between axial and equatorial CO ligands in $M(CO)_5 L$ (M = Group VIB metal) derivatives is employed in establishing intramolecular versus intermolecular axial—equatorial carbon monoxide ligand exchange pathways.

In previous publications we have demonstrated that octahedral metal carbonyl complexes of the types $M(CO)_5 L$ and $cis \cdot M(CO)_4 L_2$ (M = Group VIB metal, L = phosphine or phosphite) often undergo ligand rearrangements by a non-dissociative intramolecular mechanism [1--4]. The criterion used in these studies has been the lack of ligand replacement, either CO or L, occurring on the same time scale as the ligand scrambling process. For example, when reaction 1 was carried out in a ¹³CO atmosphere it did not afford either more highly ¹³CO-labelled parent species or $W(CO)_6$. Analogous observations were made using stereoselectively oxygen-18 labelled derivatives, where the oxygen-18 isotope shift on the ¹³C NMR of the carbonyl ligands was em-

$$cis-W(CO)_4({}^{13}CO)P(OMe)_3 \rightleftharpoons trans-W(CO)_4({}^{13}CO)P(OMe)_3$$
 (1)

ployed as the probe [3]. An additional rule, which is often simpler to test experimentally, for providing definitive information regarding the molecularity of reactions such as that described in eq. 1 is presented herein based on ${}^{13}C{}^{-13}C$ spin—spin coupling studies.

A stereoselectively, equatorially ¹³C-labelled Mo(CO)₅PMe₂Ph derivative was prepared according to eq. 2 at 65°C in hexane and its ¹³C NMR spectrum in CDCl₃ is shown in Figure 1A. The sample of *cis*-Mo(CO)₄(¹³CO)PMe₂Ph *cis*-Mo(CO)₄[PMe₂Ph]NHC₅H₁₀ + ¹³CO \rightarrow

$$cis-Mo(CO)_4(^{13}CO)PMe_2Ph + NHC_5H_{10}$$
 (2)

0022-328X/81/0000-0000/\$ 02.50, © 1981, Elsevier Sequoia S.A.

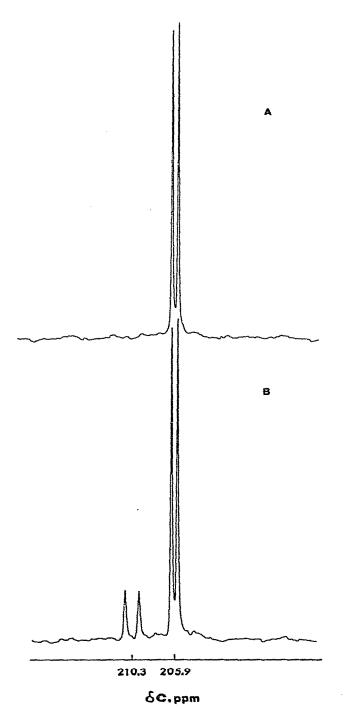


Fig. 1. ¹³C NMR spectra of $Mo(CO)_5 PMe_2 Ph$ in $CDCl_3$. (A) Stereoselectively ¹³C-labelled cis-Mo(CO)₄(¹³CO)PMe₂ Ph species, $\delta(C_{CIS})$ 205.9 ppm (J(P-C) 9.3 Hz). (B) cis-Mo(CO)₄(¹³CO)PMe₂ Ph after being heated in heptane at 75° C for 12 h, $\delta(C_{trans})$ 210.3 ppm (J(P-C) 21.5 Hz).

Fig. 2. Same as in Figure 1B determined at higher resolution.

was isolated and purified by recrystallization from chloroform/methanol. Upon heating this stereoselectively ¹³CO-enriched sample at 75°C in heptane for 12 h, followed by isolation and redissolution in $CDCl_3$, the ¹³C NMR spectrum seen in Fig. 1B was obtained. As noted in Fig. 1B, the carbonyl resonance for the axial CO ligand is now in evidence, indicating a thermal redistribution of the ¹³CO label has occurred. Further scrutinizing of the ¹³C NMR spectrum of this species under higher resolution (Fig. 2) reveals ¹³C—¹³C spin—spin coupling between axial and equatorial CO ligands, where J(C-C) 3.68 Hz. Hence, the presence of molecules possessing two labelled ¹³CO ligands is indicative of rearrangement via an intermolecular pathway.

On the other hand during the stereomobility of the ¹³CO ligand in *cis*- $W(CO)_4(^{13}CO)P(OMe)_3$, prepared from *cis*- $W(CO)_4[P(OMe)_3]Cl^-$ and ¹³CO, as depicted in eq. 1, no axial—equatorial ¹³C—¹³C spin—spin coupling was observed. This is of course the result anticipated for an intramolecular rearrangement process. It is important to point out that we have noted ¹³C—¹³C spin—spin coupling constants in a variety of $M(CO)_5$ L species and these values generally lie in the range of 2—4 Hz. In general, the technique

described here should be applicable to any metal carbonyl species containing magnetically different CO groups which has been labelled initially with one ¹³CO ligand, and for which the J(C-C) is observable.

The energetic and molecularity of the pathways for ligand stereomobility in metal carbonyl derivatives as a function of the metal and the substituted ligand is an area of continuing investigation in our laboratories.

Acknowledgement. The financial support of this research by the National Science Foundation through Grant CHE 80-09233 is greatly appreciated.

References

- 1 D.J. Darensbourg and R.J. Kump, Inorg. Chem., 17 (1978) 2680.
- 2 D.J. Darensbourg, Inorg. Chem., 18 (1979) 14.
- 3 D.J. Darensbourg and B.J. Baldwin, J. Amer. Chem. Soc., 101 (1979) 6447.
- 4 D.J. Darensbourg, B.J. Baldwin, and J.A. Froelich, J. Amer. Chem. Soc., 102 (1980) 4688.